| 14 |-

EUGENE DIETZGEN CO.
 DRAWING MATERIALS, MATHEMATICAL and

 SURVEYING INSTRUMENTSChicago New York San Francisco New Orleans Pittsburg Toronto
Distances from Center of Roadway for Cross-Sectionins Roadway 16 feet wide. Side Slopes 1 on 1. For Single Track Embankment.

H	0	. 1	. 2	. 3	. 4	. 5		. 7	. 8	. 9	H
0	8.0	8.1	8.2	8.	8.4	8.5	8.6	8.7	8.	8.9	0
1	9.0	9.1	9.2	9.3	9.4	9.5		9.7	9.8	9.9	
2	10.0	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	
3	11.0	11.1	11.2	11	11.4	11.5	11.6	11.	11.8	11.9	
4	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	
5	13.0	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	
6	14.0	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	
7	15.0	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	
8	16.0	16.1	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	
8	17.0	17.1	17.2	17.3	17.4	17.	17.6	17.7	17.8	17.9	
10	18.0	18.1	18.2	18.	18.4	18.	18.6	18.7	18.	18.9	10
11	19.0	19.1	19.2	19.	19.4	19.	19.6	19	19.8	19.9	11
12	20.0	20.1	20.2	20.3	20.4	20.5	20.6	20	20.8	20.9	12
13	21.0	21.1	21.2	21.3	21.4	21.	21.6		21.8	21.9	13
14	22.0	22.1	22.2	22.3	22.4	22	22.6	22.7	22.8	22.9	14
15	23.0	23.1	23.2	23.3	23.4	23	23.6	23.7	23	23	15
16	24.0	24.1	24.2	24.3	24.4	24.5	24.6	7	24.8	24.9	17
17	25.0	25.1	25.2	25	25	25.5	25.6	7	8	9	17
18	26.0	26.1	26	26.3	26	26.5	26.6	26.7	26.8		18
19	27.0	27.1	27	27	27	27.	27.6	27			19
20	28.0	28.1	28.2	28.3	28.4		28.		29	9	21
21	29.0	29.1	29.2	29.3	29				29.8	29.9 30.9	
22	30.0	30.1 31.1	30.2 31.2	30.3 31.3 3		30.5 31.5	.	30.7 31.7	30.8 31.8	30.9 31.9	22
24	32.0	32.1	32.2	32.3	32.	32.5	32.6	32.7	32.8	32.9	24
25	33.0	33.1	33.2	33	33.4	33.5	33.6	33.7	33.8	33.9	25
26	34.0	34.1	34	34.	34.4	34.5	34.6	34.	34.8		
27	35.0	35.1	35	35.3	35.4	35					
28	36.0	36.1	36.2	36.3	36.4	36.5					
29	37.0	37.1	37.2	37.3	37.4						
30	38.0	38.1	38.2	38.3	38.4 394	38. 39	38.6 39.6	38.7 39.7	38.8 39.8	38.9 39.9	
31	39.0	39.1	39.2	39.3	39.	39.5 40.5	39.6	39.7 40.7	39.8 40.8	39.9 40.9	
32	40.0	40.1	40.2	40.3 41.3	40.4	40.5	40.6	40.7	40	41.9	
33	41.0 42.0	41.1	41.2 42.2	41.3 42.3	41.4 42.4	41.5	42.6	41.7	41.8	42.9	
34	43.0	43.1	43.2	43.3	43.4	43.5	43.6	43.7	43.8	43.9	35
36	44.	44.1	44.2	44.3	44.4	44.5	44.6	44.7	44.8	44.9	37
37	45.0	45.1	45.2	45.3	45.4	45.5	45.6	45.7	45.8	45.9	38
38	46.0	46.1	46.2	46.3	46.4	46.5	46	46.7	46	46.9	38 39
39	-	47.1	47.2 48.2	47.3 48.3	47.4	47.	47.	47	47		39 40

Example-If point is 22.6 ft . above grade, how far should it be from center to be a slope stake point? Ans. from Table 30.6. For same slopes but other widt of roadbed, correct above figures $30.6=32.6$. For slopes of 1 on $11 / 2$ see inside of back cover. $30.6=32.6$. For slopes of 1 on $1 / 1$ see inside or
Copyright, 1914, by Eugene Dietzgen Co.

DIETZGEN'S RAILROAD CURVE AND REDUCTION TABLES
Copyright, 1914, by Eugene Dietzgen Co., New York City

CURVE FORMULAS
Radius $=\mathrm{R}=\frac{50}{\sin \cdot \mathrm{D} / 2}$ (1) Degree of Curve $=\mathrm{D}$ and $\sin . \frac{\mathrm{D}}{2}=\frac{50}{\mathrm{R}}$ (2)
Tangent $=\mathrm{T}=$ Ran $\frac{\Delta}{2}(3)$ Length of Curve $=\mathrm{L}=100 \frac{\triangle}{\overline{\mathrm{D}}}$ (4)
Middle ordinate $=\mathrm{M}=\mathrm{R}\left(1-\cos . \frac{\Delta}{2}\right)(5)=$ Rivers $\frac{\Delta}{2}(6)$
External $=\mathrm{E}=\mathrm{T} \tan \frac{\Delta}{4}-(7)=\mathrm{R} \div \cos \cdot \frac{\Delta}{2}-\mathrm{R}(8)=\mathrm{Rexsec} \frac{\Delta}{2}(9)$
Long Chord $=C=2 R \sin \cdot \frac{\Delta}{2}(10) \Delta=$ Central Angle
EXPLANATION AND USE OF TABLES
 and P. T. $\Delta=62^{\circ} 10^{\circ} \mathrm{D}=8^{\circ} \quad 20^{\prime}$. From Table IV for 1° curve $\mathrm{T}=$
3454.1 and $\div 1 / 3=414.49 \mathrm{ft}$. From Table V correction $=36$ or $\mathrm{T}=$
 746.00 and P. T. $=$ Sta. P. C. $+\mathrm{L}=164+91.50$.

Offsets.-Tangent offsets vary (approximately) directly with D and with square of the distance. Thus tangent offset for Sta.
158 on above curve is 2.16 ftt . found as follows. From Table III tangent offset for $100 \mathrm{ft} .=7.27 \mathrm{ft}$. Distance $=15 \mathrm{n}$. Sta. P. C. C. $=54.50$, hence
offset $=7.27(54.50 \div 100)^{2}=2.16 \mathrm{ft}$ Also divided by twice the radius equals (approximately) the distance from tangent to curve. Thus $(54.50)^{2} \div(2 \times 688.26)=2.16 \mathrm{ft}$.

Deflections.-Deflection angle $=1 / 2 \mathrm{D}$ for 100 ft ., $1 / \mathrm{D}$ for 50 ft ,
 $2^{\circ} 16.2^{\prime}$, or $=2.50 \times 54.5=136.2^{\prime}$ from Table IIII. For Sta. 159 deflecion angle $=2^{\circ} 16.2^{\prime}+8^{\circ} 20^{\prime} \div 2=6^{\circ} 26.2^{\prime}$, etc.

Externals. -May be found in similar manner to tangents. Thus E for curve above is $91: 37$. For from Table IV for 1^{1} curve $\mathrm{E}=960.6$
for $8^{\circ} \quad 20^{\prime}=960.6 \div 81 / 3=91.27$ and from Table V correction $=10$ or $\mathrm{E}=91.37 \mathrm{ft}$. Or suppose $\Delta=32^{\circ}$ and E is measured and found to be 42 ft . What is D? From Table IV $\mathrm{E}=230.9$ and $\div 42=5.5$ or $\mathrm{D}=$
$5^{\circ} 30^{\circ}$.

21 Sec.Coe-Cedor Post - County Core Tag on 6" Spruce - Cor. N5 OE 65/ks.
$\left(\frac{3 p}{1}\right)$ NIta col. - cedar port- County cor. -

(21) Sec. Cop-Cedar-Past-County COR-Taq on 6"Spruce- N 50F H-565/ist $\frac{10}{}$ COR.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

615 Sec．cop．－Orig．－B．T．－iren pint Tag on 6＂Aspen－SフプE－1ch To Cas．
（1／4）I cor－pipe set by Gounty
\square
－

－
\qquad
\qquad
（）
\qquad
（）
\qquad

（615）Sec．Gee．－Iron Ain－Tag on 6＂Aspen－SフプE－ch．To core．

3855 Tupi Cos．－OOF stake－pipe $\left(\frac{855}{16}\right.$ vet at Lie．by C．C．C．－Tag on 4 Tam．－ $542^{\circ} \mathrm{W}$－ 24 Its To CaR． Tam 6＂I $520 E-23$ Tam． $8-N 45 E-23$
45 y／16 cop－stofe－set by county （1／6）Tag an $8^{\prime \prime}$ Aspen－ 520 W － 62 IAS TO GUR．
（（3） $1 / 4$ cap－state s Pipe－Orig．BT W．p．Stump－ $24^{\prime \prime}$ ．South－20／ts Tog on $8^{\prime \prime}$ Aspen $5 / 0 \mathrm{~W}-.36$ Its， To cop．
$\frac{6}{7}$ sec．Gore．－post set by county Tag on fence post at．Cow．

$\left(\frac{78}{18}\right.$ Ser. Goe-Cronty- Pipe Tag on Ash - 12"- S50E-1.15d's.
(1/6) $1 / 16$ coe- County - Iron RinTag on fence part 25 its West To Cop.
(6) Ser. Cor-past set by county-Taig on fence post at care.
(1) Gunty cor-

E'/4 B.T. W.Pine stp-S43E- 49^{\prime}

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

Sec. Goe - County- copped pipe-Tag on post-South 21 it's to GOR.

-						
						- m
						46
-						
			Bc			
8			β_{c}			$15 \quad 1$
5						
T						46
6						
c						
					Bb	46
e						
A Ab	A6	BC	Be	Ab	A6	${ }^{\text {A }}$.

(16) 1s coe.-post set by Gounty B.T-stamp- $545 W$-Sis 145 - Tag set's on B.T.

819
$\frac{89}{1716}$ Sec. coe.-copped pipe set by County-Tag on post-South 27 ins to cor.

\qquad

| \square | |
| :--- | :--- | :--- |

(5/4) Original - Cedar past
tag on birch-7-56/w-15

$$
\begin{aligned}
& 16 \text { 1/ }^{15} \text { If cop- B.T. - } 5^{\prime \prime} \text { Cedar - Fast } \\
& \text { 46 its To core. }
\end{aligned}
$$

17-16 1/4 core-Iron pipe set by Countytag on fence post ot LOR.
$\frac{17 \mid 16}{20}$ Sec. cor - Iron pipe set by County Jog on $5^{\prime \prime}$ Ajoen- $552 \&-35$. las to COR.
$16+15$ I/ COR. BIT. 5 " Cedar. EOST 46 MEs to GOP.
$\frac{9}{16}$ i cor - post set by county- B.T. stump $545 \mathrm{~W}-52 \mathrm{H} 5-70 g$ set on B.T.

8	9
17	16
sec. cox. copped pipe set by	

$\frac{817}{220}$ Sec. Cue - Orig. B.7. Tam. stamin-N450W-20价s To GOR.
$17+16$ It - Iran pipe set by County ω
\qquad
$\frac{1216}{2021}$ Sec. Lax- tron pipe set by 2021 county

\qquad
7 gg on $\operatorname{tam}=3^{\prime \prime}$ - 50 auth 3 chis To Ce.
$18+171 / 4 \cos -$ Orig. B.T. Fir - 10". $N 30^{\circ} \mathrm{F}-15$ Ks - Tag on $4^{\prime \prime}$ Burch- West 38 lists To Lex.
$\left(\frac{819}{716}\right)$ sec. cox- copped pipe set by county

(1/6) I/6 coe-past set by countyTag on fence post- 39 Its E TO COR.

W/4 I/4 coe-post set by County. Tag on $6^{\prime \prime}$ Ash- NGOE-17 its to Ger.
(1/68) 1/6 cope- post set by county Fog on $5^{\prime \prime 1} 45 h$ - $560^{\circ} \mathrm{E}$ - post sets 25 it's F of Pood \&.
(1/6) 1/6 cop. - orig. B.T.- Tam - 5"1 fast - 20 Its- Tag is an Bit.
\square
Q-
\qquad

\square
\qquad

\square
 $14^{\prime \prime}-N 45^{\circ} \mathrm{W}$ of coe - $92115-60.1$
$\left(\frac{19}{30}\right.$ sec. Coe-post set by countcyTag on post-pipe $33^{\prime} \mathrm{F}$ of post-

21.22 1/4 cOR - Orig. B.T. - Cedar smag 7^{\prime} high - $10^{\prime \prime}$

 39.85

30-29 1/4 core-Orig. B.T. Cedar stump$8^{\prime \prime}$ - $580^{\circ} \mathrm{E}$ - $14 / 1 \mathrm{~s}$. Tag an fence post - Fast 38 its to cos

| A. | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Tag on Aspen- $3^{\prime \prime}$ Nonth-2 Atv.

Pages 37 Thru 42 are blank

